
Abstract Delta Modeling: My Research Plan∗

Michiel Helvensteijn
CWI, Science Park 123
1098XG, Amsterdam

the Netherlands

michiel.helvensteijn@cwi.nl
http://www.mhelvens.net

ABSTRACT
Software product lines are sets of software programs with
well defined commonalities and variabilities that are distin-
guished by which features they support. There is need of
a way to organize the underlying code to clearly link fea-
tures on the feature modeling level to code artifacts on the
implementation level, without code duplication or overspec-
ification, so we can support automated product derivation.
Existing approaches are still lacking in one way or another.
My answer to this problem is delta modeling. My thesis
will approach delta modeling from an abstract algebraic per-
spective called Abstract Delta Modeling. It will give a thor-
ough formal treatment of the subject and extend it in sev-
eral directions. A workflow for building a product line from
scratch, a way to model dynamic product lines as well as
plenty of practical examples and case studies.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
F.3.3 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms
Theory, Languages, Algorithms, Performance

Keywords
Product lines, delta modeling, phd thesis, development work-
flow, dynamic product lines, modal logic, type systems

1. INTRODUCTION AND MOTIVATION
Code duplication leads to reduced maintainability. In soft-
ware product line engineering, which is concerned with main-
taining a potentially large set of related software systems,
this is an urgent problem. Several solutions have been sug-
gested to this problem, but each has significant drawbacks.

∗This work is partially supported by the EU project FP7-
231620 HATS: Highly Adaptable and Trustworthy Software
using Formal Models (http://www.hats-project.eu)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC - Vol. II September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1095-6/12/09 ...$10.00.

In my thesis I will propose the approach of Abstract Delta
Modeling, which aims to make building and maintaining
product lines more intuitive, more suitable for concurrent
and isolated development as well as less susceptible to code
duplication and overspecification.

1.1 Basic Terminology
A software product line (SPL) (or software family) is a set of
software systems, called software products, with well-defined
commonalities and variabilities [6, 24]. In software product
line engineering, SPLs are developed by structured reuse
in order to reduce time to market and to increase product
quality. Automated product derivation generates individual
products from the product line artifacts by a mechanical
process which requires no human intervention by virtue of a
sufficiently expressive code base.

Different software products are distinguished from each
other by which features they provide. Features can be de-
scribed as designated product characteristics or increments
of product functionality [1]. A product is uniquely identified
by a feature configuration, i.e., a valid selection of features.
The different feature configurations that are supported in an
SPL is expressed by a feature model [14, 30]. On the feature
model level, features are merely labels [7]. To mechanically
derive a product for a particular feature configuration, the
code base has to be designed with a clear link between fea-
tures and code. It is important that all possible products
can be generated from a trivial composition of this code.

1.2 Existing Approaches
In general, approaches facilitating automated product deriva-
tion for SPLs can be classified in two main directions [16].
The first direction consists of annotative approaches such as
conditional compilation, frames [32] or Colored Feather-
weight Java (CFJ) [15]. These approaches annotate the
complete set of product line code with feature labels so that
all irrelevant parts can be removed for generation of a spe-
cific product. The disadvantage is that these approaches
generally lack a separation of concerns. The annotated code
belonging to a specific feature(set) can potentially be spread
across the entire code-base, making it difficult to maintain.
The upside of annotative approaches is that variability can
be very fine-grained. Single statements or even expressions
can be conditional on some feature. Nonetheless, I am more
interested in the second direction.

The second direction consists of compositional approaches
which associate product fragments to features. Based on fea-
ture selection, those product fragments are then assembled
to implement the product for a particular feature configu-



ration. Two prominent examples (from before I began my
research) are AHEAD [1], in which a product is built by
stepwise refinement of a base module with a sequence of
feature modules, and delta modeling [28, 26], which worked
similarly, but with a many-to-many relation between fea-
tures and code fragments, rather than a one-to-one relation
as in AHEAD. Both had their shortcomings, which I will
now briefly discuss.

AHEAD introduced the concept of feature module, which
consists of the code that implements a specific feature when
it is applied to the base module. These feature modules
are then put into a manually determined linear order, used
to generate products with more than one feature. Feature
modules later in that linear order can overwrite the code
of earlier modules, in order to make the features work well
together, so this has to be taken into account in their devel-
opment. The drawback of forcing conceptually independent
features into a linear order is that they can no longer be
developed independently, each feature implementation de-
pending on the one before. While this may be useful for
subfeatures and other closely related features, a linear order
overspecifies the relation between features, so one feature
module can unintentionally and silently overwrite the code
of another, leading to bugs that are hard to detect. An auto-
mated error checker cannot distinguish between intentional
and unintentional overwriting of code, so cannot warn you.

Originally, the delta model of a product line consisted of a
single core and a set of product deltas [28, 26]. These deltas
look like feature modules, but can be associated with more
than one feature at the same time. The set of feature config-
urations a delta is associated with is expressed through its
application condition. So combinations of features could be
implemented without overspecification. However, conflicts
between deltas applicable for the same feature configuration
were prohibited. Instead of using a linear order, delta model-
ing was at the other end of the spectrum, and no two deltas
could be ordered at all. To express all possible products,
an additional delta covering the combination of the conflict-
ing deltas had to be created, requiring fine-grained exclusive
application conditions and leading to code duplication.

Some related approaches in programming are traits [8, 2]
and mixins [29]. However, traits and mixins are ‘pulled in’
by a class, rather than ‘pushed in’ from the outside. They
impose the strict requirement that the core product should
already know about all possible features that could be im-
plemented on top of it. Such an approach would lack mod-
ularity and scalability. ‘Pushing in’ code from the outside
is sometimes called invasive composition, and it makes sure
that there is no predefined limit to the functionality that
can be implemented on top of a core product.

One approach that does allow ‘pushing in’ of code is as-
pect oriented programming (AOP) [18, 31, 20, 23, 22]. It
also allows relatively fine-grained modifications. However,
something lacked by aspects as well as traits and mixins is
the ability to add and remove methods, classes and mod-
ules. Being restricted to modifying on a sub-method level is
quite limiting. Also, none of those three techniques have an
inherent link to features from the feature model.

1.3 Abstract Delta Modeling
The approach I propose is, at its core, a mix of delta mod-
eling and AHEAD. A compositional approach in which the
deltas / feature modules may be put in an arbitrary partial
order. As it resembles delta modeling the most, I decided
to work together with Ina Schaefer, who has previously au-

thored papers on delta modeling, in order to improve and
extend the delta modeling approach. A partial order is a
natural fit for this sort of model, as it allows the developer to
order related deltas, so they can overwrite each others code,
and leave unrelated deltas unordered, so the developer can
be warned when they contain conflicting implementations.
The partial order also allows for a novel way to resolve such
conflicts. The developer can choose to order two conflicting
deltas, so one of them ‘wins’. But this is often not appro-
priate, as two features with conflicting implementations can
still be conceptually unrelated to each other. This is called
the optional feature problem [17]. One way to solve such a
problem is what is referred to in [17] as a derivative mod-
ule. The partial order supports derivative modules by using
deltas that are greater in the partial order than the two
conflicting deltas, developed such that they make the two
conflicting deltas work together in the way intended. We
call them conflict resolving deltas.

The first paper written about this form of delta modeling
is Abstract Delta Modeling (ADM) [4], which approaches
the topic from an abstract algebraic perspective. Products
and deltas are no longer strictly about a specific program-
ming language, or even about software at all, making ADM
very widely applicable. Being a formal description of deltas,
we were able to provide mathematically rigorous proofs of
several desirable properties, such as program line unambi-
guity, i.e., that for every feature configuration, a single un-
ambiguous product can be generated.

ADM will form the core of my PhD thesis. But the for-
malism will be extended and explored in several directions.
ADM can be seen as a design pattern that can be put to
different, sometimes unexpected, purposes, such as profile
management on a modern mobile device. I explore differ-
ent workflows intended to develop product lines with ADM,
ways to model dynamic product lines, as well as a modal
logic in order to reason about the semantics of deltas. There
are also plans to explore type systems for delta modeling.

Concretizations of ADM have already been used by the
HATS project [10]. The Delta Modeling Workflow (DMW)
has been applied to an industrial scale case-study. And
many smaller examples have also been created to validate
the applicability of ADM.

This research plan is structured as follows: Section 2 will
explain the key research questions for my thesis, grouped by
direction of research. Where available, it also gives prelim-
inary answers to those questions, as well as examples and
figures to illustrate the different research topics. Section 3
gives a brief view on the research methodology I use. Fi-
nally, Section 4 gives a full overview of past, current and
future work, as well as detailed plans for my thesis.

2. RESEARCH QUESTIONS & ANSWERS
I group various important research questions by the different
research topics that have branched from ADM, starting with
ADM itself.

Each following subsection will give a small summary of the
research topic, a list of key research questions and, where
available, a list of preliminary answers to those questions,
possibly from my own published or submitted papers.

2.1 Abstract Delta Modeling
Abstract Delta Modeling shows how to model product lines
using deltas. The abstract formalism gives a functional
meaning to features from the feature model and provides



(u) Editor

print(): void { D }

Pr

(u) Editor

font(c: int): Font { E }

SH

(u) Editor

font(c: int): Font { F }

onMouseOver(c: int): void { G }

EC

(r) Editor

model: Model;

getModel(): Model { A }

font(c: int): Font { B }

onMouseOver(c: int): void { C }

Ed

(u) Editor

onMouseOver(c: int): void { H }

TI

(u) Editor

semAnalyzer: SemanticAnalyzer;

font(c: int): Font { I }

onMouseOver(c: int): void { J }

(r) SemanticAnalyzer

analyze(m: Model): void { K }

getErrors(): Errors { L }

SA

(u) Editor

print(): void { M }

Pr ∧ SH

(u) Editor

font(c: int): Font { N }

SH ∧ EC

(u) Editor

font(c: int): Font { O }

SH ∧ SA

Figure 1: Graphical representation of the delta model for the Editor product line. The dashed boxes represent
deltas. They are decorated with their application conditions, represented by a propositional formulas, and
placed in a partial order. They contain class replacements (r) and updates (u) displayed in UML.

a novel mechanism for resolving implementation conflicts.
This mechanism is first explained for single-product delta
models and is then lifted to the level of full product lines.
Abstract Delta Modeling, as well as the papers with that
title [4, 5], pose several research questions:

1. How can the intuitive idea of a delta model and prod-
uct line be formally specified, so we can perform rig-
orous analysis and proof?

2. How can we formally define conflicts and resolution of
conflicts in our model?

3. Can we prove that a product line with no unresolved
conflicts can generate a unique product for each feature
configuration?

4. How does ADM compare to existing approaches for
modeling software product lines?

Abstract Delta Modeling has been thoroughly treated in a
paper published in the proceedings of GPCE ’10 [4] and an
extension of it has been accepted to appear in a special issue
of MSCS [5]. The answers provided to the previous questions
are roughly as follows:

1. Deltas, their composition and the empty delta are seen
as a monoid (D, ·, ε) acting on the left of a set of prod-
ucts P. We call the 5-tuple (P,D, ·, ε,−(−)) a deltoid.
A delta model is a tuple (D,≺) with D ⊆ D and ≺ a
partial order over D. ≺ restricts the order in which the
deltas can be applied. A product line is represented as

(F ,Φ, c,D,≺, γ) where F is a set of features, Φ is the
set of valid feature configurations over those features
(the feature model), c is the core product to which the
deltas in D are applied, (D,≺) is an underlying delta
model and γ is a function mapping each delta to its
application condition: the set of feature configurations
to which it is applicable. Figure 1 shows the exam-
ple product line from [5], which has concrete object
oriented setting, in a graphical representation.

2. Two deltas x, y ∈ D are in conflict if they are non-
commuting: y ·x 6= x · y and not ordered by ≺. A third
delta z ∈ D can resolve the conflict if it is greater than
both deltas in ≺ and z · y ·x = z ·x · y.

3. The proof appears in [4, 5].

4. We can encode most other approaches in delta model-
ing. A thorough comparison appears in [4, 5].

2.2 Delta Modeling Workflow
In the vast expressive space of delta modeling, it may not
be clear to a developer how to create a product line from
scratch. The ADM formalism is descriptive rather than
prescriptive. To that end, I proposed the Delta Modeling
Workflow (DMW). I show preservation of global unambigu-
ity and completeness in the product lines resulting from this
workflow. I also show how the workflow naturally supports
concurrent development and how it avoids code duplication
and overspecification. The research questions are:



1. What are the useful properties we would like a product
line to have?

2. Can we define a systematic workflow to build such
product lines while allowing different developers to work
independently and in isolation?

3. Given such a workflow, can we prove that it exhibits
those properties?

The Delta Modeling Workflow has been treated in a paper
published in the proceedings of VaMoS ’12 [11], and its use in
an industrial scale case study has been described in another
paper published in the same proceedings [13], written by
Peter Wong, Radu Muschevici and myself. An extension
of [11] has been mostly written, and I am in search of an
appropriate venue. The answers provided to the previous
questions are roughly as follows:

1. A product line should be globally unambiguous, mean-
ing that all possible conflicts inside it have been re-
solved. It should also be complete, in the sense that
all features in the feature model have been appropri-
ately implemented for each feature configuration.

2. The workflow is described in detail in [11]. The flow-
graph in Figure 2 gives an overview. Each feature is
implemented using a single delta, in the order of the
subfeature relation, i.e., base features first, subfeatures
later. Then any desired interaction between features is
implemented using feature interaction deltas and any
implementation conflicts resolved using conflict resolu-
tion deltas. The paper describes why the workflow can
be followed by different developers independently and
in isolation as well as why it preserves the properties
listed in the answer to question 1.

3. Proof sketches of those properties appear in [11]. Full
formal proofs will appear in its extension.

2.3 Dynamic Delta Modeling
In traditional application engineering a single valid feature
configuration is chosen, which doesn’t change during the life-
time of the product. However, there are many useful appli-
cations for product lines that change their configuration at
run time. Dynamic Delta Modeling (DDM) is a new tech-
nique for generating efficient dynamic product lines from
their static ADM counterparts. The research questions can
be listed as follows:

1. What is a dynamic product line?

2. How do we model the behavior of a dynamic product
line in the context of ADM?

3. Can a product line modeled with ADM be ‘converted’
into a dynamic product line? And if so, how?

4. How can we define the ‘cost’ of a dynamic product line?
And can such a dynamic product line be optimized to
be less costly?

5. Does such a(n optimized) dynamic product line behave
the way we want it to? Can we prove this?

6. What is a good use-case for this kind of dynamic prod-
uct line?

feature
(−) to im-
plement?

X
implement
feature f
with new
delta x

interaction
(−) to im-
plement?

implement
interaction
I with new

delta z

conflicts
(−) to

resolve?

resolve C
conflicts
with new
delta z

none

f

none

none

I

C

Figure 2: Overview of the Delta Modeling Work-
flow. After implementing a feature, interaction is
implemented and implementation conflicts resolved.

A paper treating Dynamic Dynamic Delta Modeling has
been accepted for publication by the DSPL 2012 workshop
[12] and will have appeared in the same proceedings as this
research plan. The answers provided to the previous ques-
tions are roughly as follows:

1. For the purposes of this paper, a dynamic product line
is like a static product line, except that the chosen
feature configuration can change at runtime. Other
definitions of dynamic product lines are discussed in
the related work section of the paper.

2. We model the behavior of a dynamic product line with
a Mealy Machine, a finite automaton with input and
output on each transition. The input corresponds to a
feature that has been turned on or off and the output
corresponds to the delta that can be used to bring
the current product up to date. Figure 3 shows such
a Mealy Machine for a product line example that is
described in the paper.

3. The paper formally describes how a static product line
can be converted into a dynamic one.

4. The paper describes the cost of monitoring a specific
feature for change. Different features will generally
have different cost. The paper describes that to op-
timize a dynamic product line, you can remove costly
tranitions from the Mealy Machine, as long as certain
reachability conditions remain satisfied.



∅

lt m

t, l t,m l,m

t, l,
m

t/εt/ε l/
ε l/

ε

m/d
2

m/d ′
2

l/
d
1

l/
d
′ 1

m/d
2

m/d ′
2

t/d
1

t/d
′
1

m/d
2

m/d ′
2

t/ε

t/ε

l/
ε l/

ε

m/d
2

m/d ′′
2

l/
ε

l/
ε t/εt/ε

Figure 3: An example Dynamic Product Line as a Mealy Machine. Each state corresponds to a valid feature
configuration. Each transition is triggered by a feature being turned on or off, and returns a delta which can
be used to bring the current product up to date. Some transitions can be optimized away to reduce cost. [12]

5. Proof of this appears in the paper.

6. The paper describes Delta Profiles, an Android ap-
plication which regulates the settings on your smart-
phone or tablet. Through a convenient user interface,
the user can design deltas that modify the settings
on the phone based on various conditions, such as
time, gps location, connected peripherals, scheduled
appointments and more.

2.4 A Modal Logic for Delta Modeling
Especially in light of the Delta Modeling Workflow (Sec-
tion 2.2), there is need of a logic in which to express certain
properties about the behavior of deltas and the semantics
of features. So far, features have been seen as labels, but
those labels actually represent some functionality we’d like
a product to have. Does a delta implement a specific fea-
ture? Under which conditions? Frank de Boer, Joost Winter
and myself have introduced the modal logic K∆, in order
to be able to reason about such notions more easily. The
research questions can be listed as follows:

1. What does a Kripke frame that embodies the seman-
tics of deltas and delta models look like?

2. What should the basic axioms of the logic K∆ be?

3. Is the logic (strongly) complete? Can we prove it?

4. On the model level, can we prove completeness of a
base theory containing only simple facts about indi-
vidual deltas?

5. What can this logic be used for in practice?

A paper describing the logic has been accepted for publica-
tion by the FMSPLE 2012 workshop [9] and will have ap-
peared in the same proceedings as this research plan. The
answers to the above questions are roughly as follows:

p

q r

0

9 1

5

8

7

6

2

3

4

v

y

u

x

z

w

u

x

z

w v

y

z

w

v

y

u

x

z

w

u x

v

y

z

w

u

x

v

y

u x

z

w

z

wv

y

Figure 4: Example view of a delta frame with prod-
ucts p, q, r and deltas u, v, w, x, y, z currently visible

1. Products are worlds in this frame and deltas are rela-
tions (Figure 4). Compound deltas, such as composi-
tion, union and partial ordering (such as in delta mod-
els), form compound relations on the frame. Models
based on this frame make semantic judgments about
which features are implemented by specific products.

2. The axioms are the classic K, Dual (as described in
[3]), as well as axiom schemata called ∆ describing the
meaning of compound delta modalities.

3. The logic is strongly complete, as proved in the paper
by a reduction to the completeness of K over the class
of all frames.

4. We were able to prove relative completeness under the
restriction of weakest precondition expressability. For
more details, I refer to the paper.

5. The logic will be used in the extension of the Delta
Modeling Workflow paper (as described in Section 2.2)
in order to describe the process and the proofs more
elegantly and succinctly.



2.5 Row Typing for Delta Modeling
Many concrete implementations of delta models fall under
the semi-abstract realm of nested key-value pairs. Modules,
classes, methods and fields in object oriented programming
have names and implementations (values). Their names
form a handle by which deltas can add, remove and mod-
ify them. The level at which elements carry a name defines
how fine-grained those modifications can be. Within this
semi-abstract realm, I want to introduce a type system to
make sure elements are not added when they are already
present or removed when they are already absent, together
with Dave Clarke and Michael Lienhard, which have already
done some preliminary work on this topic, applying row typ-
ing (normally used for structures in programming languages)
to delta modeling [19, 21]. We will try to lift the typesystem
to the level of product lines (whereas right now it has only
been done without taking features into account), and try to
use it as an alternate way to detect conflicts. The research
questions are:

1. How can we formally define the ‘semi-abstract realm
of nested key-value pairs’?

2. How is the typesystem formally defined?

3. What are the facts we want to be able to prove with
this type system?

4. Can we prove those facts using the type-system?

5. Can we prove that there are no unresolved conflicts
using the type-system?

Previous work by Dave Clarke and Michael Lienhardt [21]
describes ‘hard conflicts’, unresolvable by their semantics,
so we also add the following question:

6. How can we reformulate those ‘hard conflicts’ so we
can resolve them anyway?

We are now writing this paper but, as of writing this research
plan, do not yet have answers to these questions.

3. RESEARCH METHODOLOGY
The research in my thesis will be largely formal and math-
ematical, and as such, will depend largely on definitions,
theorems and mathematically rigorous proofs. Many of the
results will also be theoretical. This is a consequence of
working in a purely abstract setting.

However, the theory has been practically applied and vali-
dated in several ways. I am funded by the HATS project [10],
which focusses on software product lines. The delta model-
ing approach has been widely accepted and is now a corner-
stone of the HATS methodology.

More specifically I have, with the help of Peter Wong and
Radu Muschevici, implemented one of the HATS industrial
scale case studies - the Fredhopper Access Server [13] - using
a concretization of ADM. Deltas have been added to the
ABS language, and support for them has been added to the
Eclipse IDE. We also added parametrized deltas to support
more advanced aspects of the Delta Modeling Workflow.

Delta Profiles, the Android application used to illustrate
Dynamic Delta Modeling, will be a major practical applica-
tion of an otherwise theoretical contribution.

I am now working on an abstract software framework to
support ADM principles for any instantiated programming

language. This will likely take the form of an Eclipse plugin
and will be another important practical contribution.

Finally, in the papers that will make up my thesis (Sec-
tion 4), there are concrete examples to illustrate the theory.

A possible threat to the validity of my theory is that ADM
has so far not been used on an actual industrial software
product line. Also missing right now is a practical compari-
son of the ADM approach to older approaches such as delta
oriented programming [27] or AHEAD [1].

4. WORK PLAN
In this section I present all papers: past, present and fu-
ture that I have (co)authored or will (co)author for my PhD
thesis, as well as the structure and content of the thesis.

4.1 Papers
The following is a list of papers that have been published or
accepted. They are identified by their bibliography number:

[4] Abstract Delta Modeling,
GPCE 2010

[5] Abstract Delta Modeling,
MSCS 2012 Special Issue

[9] A Modal Logic for Abstract Delta Modeling,
FMSPLE 2012

[11] Delta Modeling Workflow,
VaMoS 2012

[12] Dynamic Delta Modeling,
DSPL 2012

[13] Delta Modeling in Practice,
VaMoS 2012

[25] HATS Abstract Behavioral Specification:
The Architectural View,
FMCO 2011 Postproceedings

The following is a list of papers I am currently working on,
possibly with coauthors:

[?1] Row Types for Product Lines in Delta Modeling

[?2] Delta Modeling Workflow revisited

[?3] Delta Profiles (tool paper)

And these are papers I would still like to write (be)for(e)
my thesis:

[?4] A Concrete Feature Satisfaction Relation

[?5] An Abstract Framework for Delta Modeling

[?6] Delta Modeling Modal Logic revisited

[4] and [5] present Abstract Delta Modeling, as briefly dis-
cussed in Section 2.1.

[11] and [13] were presented at VaMoS 2012, and intro-
duce the Delta Modeling Workflow, as briefly discussed in



Section 2.2, as well as its application to an industrial scale
case study: the Fredhopper Access Server.

[25] describes the architectural view of the ABS language
created by the HATS project, which includes a description
of the Delta Modeling Workflow.

[12] describes Dynamic Delta Modeling, as briefly dis-
cussed in Section 2.3.

[9] describes the modal logic K∆ as briefly discussed in
Section 2.4.

[?1] extends the original work on a type-system for delta
modeling by Michael Lienhardt and Dave Clarke, briefly de-
scribed in Section 2.5. I am working with them on this.

[?2] describes an alternate formalism for the Delta Model-
ing Workflow, with a more detailed analysis of locality and
full formal proofs using K∆. I plan to extend it further
and submit it to a journal, most likely IEEE Transactions
on Software Engineering.

[?3] will be a tool paper describing the Android applica-
tion which served as practical example for [12]. Figure 3
actually shows an example related to that application.

[?4] should describe a concrete use of the feature satisfac-
tion relation described in [9], [11], [13] and [?2]. A possible
direction is to use petri-nets to demonstrate feature specifi-
cations in the form of firing patterns.

[?5] will describe my efforts to implement Abstract Delta
Modeling in an abstract framework. It will likely consist of
an Eclipse plugin which can apply the principles of abstract
delta modeling to any instantiated programming language.

[?6] was proposed by my thesis supervisor, Frank de Boer.
He suggested we should write a journal version of [9].

4.2 Reading Order
There is a partial order between the topics of Section 2,
which will also be a recommended reading order of my thesis:

• At the core will be Abstract Delta Modeling [4], [5]

Then there are four branches which could be read more or
less independently:

• Delta Modeling Workflow [11], [13], [25], [?2]

• Dynamic Delta Modeling [12], [?3]

• The Modal Logic K∆ [9], [?6]

• Row Types for Delta Modeling [?1]

[?4] will tie together the Delta Modeling Workflow with the
Modal Logic K∆. [?5] will be used for practical examples
throughout the thesis. Also, later sections of the Delta Mod-
eling Workflow chapter will depend on the modal logic K∆.

4.3 Abstraction Level
The thesis will be ’layered’ by abstraction level:

• [4], [5], [9], [11], [12] and [?2] and [?6] discuss delta
modeling on a completely abstract level.

• [?1] will take place in the semi-abstract realm of key-
value pairs.

• [13], [25], [?3], [?4] and [?5] are examples of delta mod-
eling in a concrete domain (e.g. object oriented soft-
ware, profile managers, petri-nets).

4.4 Perspective
A useful distinction to make when looking at these topics
is the perspective they explore. The topics can be divided
into two different perspectives, which may be seen as Kripke
Frames:

• The frame (D,≺), which relates deltas in a delta model
to each other by a developer-defined partial order. Fig-
ure 1 shows this perspective, and it is prevalent in [4],
[5], [11], [13], [25], [?1], [?2] and [?5].

• The frame (P,D), which relates the possible products
(both in and outside any particular product line) to
each other by the set of deltas which can transform
one product into another. Figures 3 and 4 show this
perspective, and it is prevalent in [9], [12], [?3]m, [?4]
and [?6].

4.5 Example Product Lines
In order to illustrate the highly formal theory in my thesis,
I will use several example product lines. Some come from
publications, some will be created purely for my thesis:

• Firstly, for everything in the abstract layer I would like
one concrete example product line to tie everything
together. Most likely in an object oriented domain,
based on the example in [4] and [5]. I hope to use
real code to illustrate the product line, based on my
abstract software framework from [?5].

• The Fredhopper Access Server case study [13].

• Based on [12] and [?3], I will show a family of product
lines, which represent rule-sets to govern the profiles
on a mobile device.

• I also want to demonstrate the ‘thesis product line’,
which is a product line of versions of the PhD the-
sis itself. The published version will be the one with
all possible ’features’ (topics), but it will be generated
from a set of deltas which I will write. Shorter ver-
sions of my thesis can also be generated and will be
downloadable from my website. These shorter versions
will be sure not to reference non-existing chapters and
such. Humorous effect aside, it has real practical ap-
plications. For example, the approach could be used
to generate shorter versions of a textbook to perfectly
fit a specific syllabus, or to generate documentation
belonging to code developed using delta modeling. It
will be a great illustration of the versatility of ADM.

4.6 Future Work
In the coming year, I will be working on the papers [?1], [?2],
[?3], [?4], [?5] and [?6]. Out of those, [?3] and [?5] are most
important, as they show the practical value of my work,
which may still be unclear. I believe that any additional
papers I write should explore the existing topics described
in this research plan with more depth, rather than explore
new topics. Otherwise there may be too great a variety of
topics for a coherent thesis. I may or may not have to narrow
the scope of my thesis already. In a few months I expect to
start writing my thesis. Until then, I hope to get inspiration
out of the SPLC 2012 doctoral symposium.



5. REFERENCES
[1] D. S. Batory, J. Sarvela, and A. Rauschmayer. Scaling

Step-Wise Refinement. IEEE Trans. Software Eng.,
30(6), 2004.

[2] L. Bettini, F. Damiani, and I. Schaefer. Implementing
Software Product Lines using Traits. In Proc. of
Object-Oriented Programming Languages and Systems
(OOPS), Track of ACM SAC, 2010.

[3] Patrick Blackburn, Johan F. A. K. van Benthem, and
Frank Wolter. Handbook of Modal Logic, Volume 3
(Studies in Logic and Practical Reasoning). Elsevier
Science Inc., 2006.

[4] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
delta modeling. In Proc. of GPCE, pages 13–22. ACM,
2010.

[5] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
delta modeling. Accepted to MSCS special issue, 2012.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison Wesley Longman,
2001.

[7] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on
Superimposed Variants. In Conf. on Generative
Programming and Component Engineering(GPCE),
2005.

[8] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. Black. Traits: A mechanism for fine-grained reuse.
ACM TOPLAS, 28(2), 2006.

[9] J. Winter F.S. de Boer, M. Helvensteijn. A Modal
Logic for Abstract Delta Modeling. In Workshop
Proceedings of SPLC 2012, 2012.

[10] R. Hähnle. HATS: Highly Adaptable and Trustworthy
Software Using Formal Methods. In ISoLA (2), pages
3–8, 2010.

[11] M. Helvensteijn. Delta Modeling Workflow. In
Proceedings of the 6th International Workshop on
Variability Modelling of Software-intensive Systems,
Leipzig, Germany, January 25-27 2012, ACM
International Conference Proceedings Series. ACM,
2012.

[12] M. Helvensteijn. Dynamic Delta Modeling. In
Workshop Proceedings of SPLC 2012, 2012.

[13] M. Helvensteijn, R. Muschevici, and P.Y.H. Wong.
Delta Modeling in Practice, a Fredhopper Case Study.
In Proceedings of the 6th International Workshop on
Variability Modelling of Software-intensive Systems,
Leipzig, Germany, January 25-27 2012, ACM
International Conference Proceedings Series. ACM,
2012.

[14] K. C. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-Oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-021, Carnegie Mellon University
Software Engineering Institute, 1990.

[15] C. Kästner and S. Apel. Type-Checking Software
Product Lines - A Formal Approach. In ASE, pages
258–267. IEEE, 2008.

[16] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE, pages 311–320,
2008.

[17] C. Kästner, S. Apel, S. S. ur Rahman,
M. Rosenmüller, D. Batory, and G. Saake. On the

impact of the optional feature problem: Analysis and
case studies. In Proc. Int’l Software Product Line
Conference (SPLC). SEI, 2009.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J. M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In ECOOP, volume
1241 of LNCS, pages 220–242. Springer, 1997.

[19] Michaël Lienhardt and Dave Clarke. Row types for
delta-oriented programming. In Proceedings of the
Sixth International Workshop on Variability Modeling
of Software-Intensive Systems, VaMoS ’12, pages
121–128, New York, NY, USA, 2012. ACM.

[20] N. Loughran and A. Rashid. Framed aspects:
Supporting variability and configurability for AOP. In
ICSR, volume 3107 of LNCS, pages 127–140. Springer,
2004.

[21] D. Clarke M. Lienhardt. Conflict detection in
delta-oriented programming. In Proceedings of 5th
International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation, 2012.

[22] M. Mezini and K. Ostermann. Variability management
with feature-oriented programming and aspects. In
SIGSOFT FSE, pages 127–136. ACM, 2004.

[23] N. Noda and T. Kishi. Aspect-Oriented Modeling for
Variability Management. In SPLC, 2008.

[24] K. Pohl, G. Böckle, and F. Van Der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, Heidelberg, 2005.

[25] E. Broch Johnsen M. Lienhardt D. Sangiorgi I.
Schaefer P.Y.H. Wong R. Hähnle, M. Helvensteijn.
HATS Abstract Behavioral Specification: The
Architectural View. In FMCO 2011 Postproceedings,
2012.

[26] I. Schaefer. Variability Modelling for Model-Driven
Development of Software Product Lines. In Intl.
Workshop on Variability Modelling of
Software-intensive Systems (VaMoS 2010), 2010.

[27] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and
N. Tanzarella. Delta-oriented Programming of
Software Product Lines. In SPLC, volume 6287 of
LNCS, pages 77–91. Springer, 2010.

[28] I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A
Model-Based Framework for Automated Product
Derivation. In Proc. of Workshop in Model-based
Approaches for Product Line Engineering (MAPLE
2009), 2009.

[29] Y. Smaragdakis and D. S. Batory. Mixin layers: an
object-oriented implementation technique for
refinements and collaboration-based designs. ACM
Trans. Softw. Eng. Methodol., 11(2):215–255, 2002.

[30] A. van Deursen and P. Klint. Domain-specific
language design requires feature descriptions. Journal
of Computing and Information Technology, 10(1):1–18,
2002.

[31] M. Völter and I. Groher. Product Line Implementation
using Aspect-Oriented and Model-Driven Software
Development. In SPLC, pages 233–242, 2007.

[32] H. Zhang and S. Jarzabek. An XVCL-based Approach
to Software Product Line Development. In Software
Engineering and Knowledge Engineering, pages
267–275, 2003.


